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Abstract

Heat transfer over a continuously moving plate embedded in non-Darcian porous medium is considered.
Boundary layer equations are derived. The resulting approximate nonlinear ordinary di�erential equations are
solved numerically. Graphical results for the velocity, temperature, Nusselt number are presented and discussed. The

results of the present study show that the exponential parameters in the velocity and heat ¯ux functions a�ected the
heat transfer coe�cient. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

A continuous moving surface through a porous

medium has many applications such as geothermal

reservoirs, and petroleum industries (petroleum

drilings).

The simultaneous e�ects of ¯uid inertia force and

boundary viscous resistance upon ¯ow and heat trans-

fer in a constant porosity porous medium were ana-

lyzed by Vafai and Tien [1]. Non-Darcian inertia

e�ects on heat transfer were considered by many inves-

tigators [2±4].

In most of the previous studies, the plate was

assumed to be stationary and the ¯uid moved over this

plate. In other studies, the plate was moved in station-

ary ¯uid.

The similarity solutions for the governing ordinary

di�erential equations of the boundary layer corre-

sponding to a stretching surface have been studied by

Ali [5]. Recently, Elbashbeshy [6] studied the heat

transfer problem for a continuous stretching surface
with variable heat ¯ux. The heat transfer in boundary
layer on an exponentially stretching surface are exam-

ined both analytically and numerically by Magyari and
Keller [7], see Fig. 1.
In our knowledge, there has not been any reported

study concerning heat transfer over a continuously
moving plate embedded in non-Darcian porous me-
dium.

The present work is to study the problem discussed
by Elbashbeshy [6] to include a uniform porous me-
dium (non-Darcian).

2. Formulation of the problem

We consider a steady, two-dimensional ¯ow of a
¯uid past a continuously moving plate with variable

surface heat ¯ux qw�x� � Ax l and velocity uw � u0x
M

(where A, l, u0 and M are constants) immersed in a
¯uid-saturated porous medium. The origin is located

at the spot through which the horizontal plate is
drawn in the ¯uid medium. The x-axis is chosen along
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the horizontal plate and y-axis is taken normal to it.
We assume that: (1) The convective ¯uid and porous
medium are in local thermal equilibrium. (2) Variable

porosity and thermal dispersion e�ects are neglected.
Upon treating the ¯uid saturated porous medium as a
continuum (see Ref. [1]), including the non-Darcian

inertia e�ects, the boundary layer form of the govern-
ing equations can be written as (see Refs. [1] and [6])
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where u and v are the velocity components, x and y

directions; e and K are the porosity and permeability
of porous medium, respectively; C is the transport
property related to the inertia e�ect, m is the viscosity,
T is the temperature, ae is the e�ective thermal di�u-

sivity of the saturated porous medium, k is the thermal
conductivity, T1 is the free stream temperature and me

is the e�ective viscosity.

The equation of continuity is satis®ed if we choose a
stream function C�x, y� such that
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The boundary conditions are

Z � 0, f 0�z, 0� � 1, f�z, 0� � 0, y 0�z, 0� � ÿ1

Z41, f 0�z, 0� � 0, y�z, 0� � 0 �7�

Fig. 1. Schematic of ¯ow induced by a stretched surface.

Fig. 2. Temperature pro®les as a function of Z for various

values of l at e � 0:45, g � 2:01, M � 0:5, z � 3 and Pr � 3:

Table 1

Nu=
������
Re
p

for variable surface heat ¯ux for various values of l
at M � 0:5, Pr � 3, g � 2:01 and z � 3

Nu=
������
Re
p

0.4102 1.2896 1.9712 3.0174

l ÿ1.0 0.0 1.0 3.0
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where the primes denote partial di�erentiation with

respect to Z, Pr � n=ae is the Prandtl number,

g � cu0Kx
M

ne
, is the dimensionless inertia parameter

expressing the relative importance of the inertia e�ect.

3. Numerical method

In this study, the Keller's box ®nite-di�erence

method was used. Eqs. (5) and (6) associated with

Table 2

Nu=
������
Re
p

for di�erent values of M at l � 1, z � 1, g � 2:01 and Pr � 3

Nu=
������
Re
p

2.1461 2.0797 2.0261 1.9448 1.8864 1.7596 1.7013

M ÿ0.2 0.0 0.2 0.6 1.0 3.0 3.75

Fig. 3. Temperature pro®les (a) and velocity pro®les (b) as a function of Z for various values of M at e � 0:45, g � 2:01,
l � 1,z � 1 and Pr � 3: (c) Temperature pro®les as a function of Z for di�erent values of Pr at M � 0:5, e � 0:45, l � 1, g � 2:01
and z � 5:
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boundary conditions (7) were solved by an e�cient

and accurate implicit ®nite-di�erence method similar
to that described in Cebeci and Bradshaw [8]. This nu-
merical scheme has several very desirable features that

make it appropriate for the solution of parabolic par-
tial di�erential equations. These features include a sec-
ond-order accuracy with arbitrary z and Z spacings,
allowing very rapid z variations and easy programming

of the solution of a large number of coupled equations.
For the sake of brevity, details of the solution pro-
cedure by this method are not repeated here.

4. Results and discussion

The local Nusselt number Nu � qw�x��TwÿT1�
k is given

by

Nu������
Re
p �

�����������������������M� 1�=2
p

y�0� , Re � u0
n
xM�1

Numerical calculations are carried out for ¯uid having
Prandtl number equal to 3 with various values of l
and M, g, z at e � 0:45:
Fig. 2 shows the e�ect of changing parameter l for

a selected value of M � 0:5, Pr � 3, z � 3 and g �

2:01: It is clear that the temperature decreases with

increasing heat ¯ux exponent and the heat is trans-

ferred from the continuous stretching surface to the

¯uid medium. From Table 1, the dimensionless heat

transfer coe�cient Nu=
������
Re
p

increases with increasing

heat ¯ux exponent l: Thus, a higher value of l indi-

cates a higher heat transfer rate from the surface.

It is seen from Fig. 3(a), the e�ect of increasing M

on the temperature pro®les for g � 2:01, g � z � 1 and

Pr � 3: It is clear that the temperature decreases with

increasing exponent of velocity M and for these values

of M heat is transferred from continuous surface to

the ¯uid medium. Furthermore, the thermal boundary
layer is also increasing with increasing M and then

more heat is dissipated to the ¯uid medium.

The dimensionless velocity depends on the parameter

M where u � @C
@ y � U0x

Mf �Z�: Fig. 3(b) shows samples

of the dimensionless velocity for g � 2:01, l � z � 1

and Pr � 3 as a function of Z for various values of
exponent of velocity M. These curves show that the

velocity pro®les decrease with increasing the exponent

of velocity M from ÿ0.2 to 3.75. In other words, the

momentum boundary layer thickness increases as M

decreases. However, there is no solution for the plate

moves away from the origin for M > 3:75 and

M < ÿ0:2, where the ¯ow part of the problem exhibit

Table 3

Nu=
������
Re
p

for di�erent values of Pr at M � 0:5, e � 0:45,
z � 5, l � 1, and g � 2:01

Nu=
������
Re
p

1.0722 1.1987 1.9816 3.825

Pr 0.72 1 3 10

Table 4

Nu=
������
Re
p

for di�erent values of g at M � 1, l � 1, e � 0:45,
z � 5, and Pr � 3

Nu=
������
Re
p

1.8116 1.8281 1.9001

g 0.35 0.73 2.01

Fig. 4. Temperature pro®les (a) and velocity pro®les (b) as a function of Z for di�erent values of g at M � 1, e � 0:45, l � 1, z � 5

and Pr � 3:
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no similarity solutions for this range of M as explained
by Banks [9].

From Table 2, the dimensionless heat transfer coe�-
cient Nu=

������
Re
p

decreases with increasing exponent of
velocity M.

Fig. 3(c) shows samples of the dimensionless tem-
perature as a function of Z for various values of
Prandtl number. The temperature decreases with

increasing Prandtl number.
From Table 3, the dimensionless heat transfer coe�-

cient Nu=
������
Re
p

increases with increasing Prandtl num-

ber. This table indicates that increasing Prandtl
number enhances the heat transfer coe�cient, where
thermal boundary layer decreases.
Some samples of the resulting velocity and tempera-

ture pro®les for M � 1, l � 1, z � 5 and Pr � 3 for
di�erent values of g in Fig. 4(a) and (b). It can be seen
from Fig. 4(a) and (b) that the temperature decreases

and velocity increases with increasing g: We can con-

clude that boundary and inertia e�ects tend to increase
the velocity and decrease the wall temperatures.
From Table 4, the dimensionless heat transfer coe�-

cient Nu=
������
Re
p

increases with increasing g:
The heat transfer coe�cient in the dimensionless

form of Nu=
������
Re
p

is presented in Fig. 5 as a function of
l in the range ÿ1RlR3 for di�erent values of g:
These curves show that the parameter l increases the
heat transfer rate greatly, while the parameter g
increases it slightly. The parameters g and l enhance

the heat transfer coe�cients.
In order to verify the numerical accuracy of the sol-

ution, numerical results were ®rst obtained for the case

e � 1 and z � 0, and compared to those reported by
Ali [5], as shown in Figs. 6±8. The fact that these
results show a close agreement is an encouragement
for further study of the e�ects of other various par-

ameters on the moving plate.
From Figs. 6 and 7, it is clear that the numerical

Fig. 5. Variation of Nu=
������
Re
p

as a function of l for di�erent

values of g at M � 0:5, e � 0:45, z � 5 and Pr � 3:

Fig. 6. Temperature pro®les as a function of Z at di�erent

values of M. - - - results of Ali [5]; ÐÐÐ present study.

Fig. 7. Temperature pro®les as a function of Z at di�erent

values of Pr. - - - results of Ali [5]; ÐÐÐ present study.

Fig. 8. Variation of Nu=
������
Re
p

as a function of M at di�erent

values of Pr. - - - results of Ali [5]; ÐÐÐ present study.
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solution gives good results in comparison with numeri-
cal solution by Ali [5].

5. Conclusions

The heat transfer over a continuously moving plate
embedded in non-Darcian porous medium with vari-

able surface heat ¯ux and velocity uw has been solved
for ÿ0:2RMR3:75 and ÿ1RlR3: It was found that
the parameters l and g enhance the heat transfer coef-

®cient. The dimensionless heat transfer coe�cient
decreases with increasing exponent of velocity M,
whereas the dimensionless heat transfer coe�cient
increases with increasing exponent of heat ¯ux, Prandtl

number and inertia parameter. The dimensionless tem-
perature decreases with increasing exponent of heat
¯ux, Prandtl number and inertia parameter, whereas

the dimensionless temperature increases with the expo-
nent of velocity.
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